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Advancing Drought Monitoring and Prediction Using a Multi-Index 
Multivariate Framework 
	

Overview	

This project addressed the two primary objectives of the MAPP-Drought program: (a) improving 
methodologies for global to regional-scale analysis and predictions and (b) developing integrated 
assessment and prediction capabilities relevant to decision makers, and particularly the 
opportunity to integrate diverse data sources. During the project period, our team has focused on 
different activities including: 

(I) Assessing the role of temperature during the 2011-2016 California drought;  
(II) Expanding, testing and implementing a multivariate drought analysis framework for 

combining multiple drought indicators probabilistically to improve drought 
monitoring and prediction;  

(III) Improving seasonal drought prediction by combining statistical and dynamical 
models.  

(IV) Amplified warming of droughts in the historical record and climate model projections 
(V) Understanding the impacts of future climatic warming on snow water equivalent and 

water availability in Sierra Nevada.  

In the following, we have summarized the results and outcomes of the project.  
 

(I)	Assessing	the	role	of	temperature	during	the	2011-2016	California	drought	

Global warming and the associated rise in extreme temperatures substantially increase the chance 
of concurrent droughts and heatwaves. The 2014 California drought is an archetype of an event 
characterized by not only low precipitation but also extreme high temperatures. From the raging 
wildfires, to record low storage levels and snowpack conditions, the impacts of this event can be 
felt throughout California. Wintertime water shortages worry decision-makers the most because 
it is the season to build up water supplies for the rest of the year. In this study, we show that the 
traditional univariate risk assessment methods based on precipitation condition may substantially 
underestimate the risk of extreme events such as the 2014 California drought because of ignoring 
the effects of temperature. We argue that a multivariate viewpoint is necessary for assessing risk 
of extreme events, especially in a warming climate. This study discusses a methodology for 
assessing the risk of concurrent extremes such as droughts and extreme temperatures. 

Considering precipitation deficit alone, the 2014 California drought is not the most extreme 
event in the historical record, with 243.6 mm average precipitation (red bar in Figure 1a). 
However, substantially warmer temperatures and several heatwaves during the 2014 California 
drought make this event unique and extreme. Over the past 119 years, November to April 2014 
has been the warmest period on record (Figure 1b). In addition to extreme monthly temperature, 
several daily maximum temperature records were set across California. Figure 1c displays 
percent increase in maximum daily temperature relative to the mean daily maximum temperature 
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during January 13 to 20, 2014 when an extreme heatwave affected almost the entire state. The 
extreme daily maximum temperatures exceeded the mean by 90% in some locations, which led 
to very dry soil and significant stress on the ecosystem. If we consider only precipitation 
information, the return period (recurrence interval) of the 2014 California drought (November-
April) is approximately 24 years. If we consider only temperature, the recurrence interval of the 
extreme heat during the California drought is estimated at approximately 120 years (see 
AghaKouchak et al., 2014 for details). Of course, extreme precipitation and temperature do not 
necessarily happen at the same time (e.g., 1977 with record precipitation extreme and near 
average temperature). However, an extreme condition combined with another non-extreme 
condition could lead to a compound extreme event with significant impacts.  

An important question is: what is the risk of a compound extreme such as the 2014 California 
drought? We argue that in a changing climate, assessing the risk of climatic extremes (i.e., 
probability of occurrence of extremes) should be evaluated using a multivariate framework that 
can account for compound and concurrent extremes. Using the survival copula methodology 
presented in AghaKouchak et al. (2014), the combination of extreme precipitation and 
temperature conditions observed in 2014 in California appears to be a 200-year extreme event 
(Figure 1d). The blue dots in Figure 1d indicate historical observations of precipitation and 
temperature anomalies and the contour lines represent compound return periods from T=10 to 
T=200 years. An event in the upper right corner (lower left) in Figure 1d corresponds to a warm-
dry (cold-wet) condition. Commonly used univariate risk estimation approaches significantly 
underestimate or overestimate the return period (risk of occurrence) of the 2014 California 
drought. Figure 1e indicates that the most extreme event (with respect to precipitation in 
California) had a recurrence interval of 120 years (the 1977 drought). However, with respect to 
both temperature and precipitation, the 1977 condition was only a 50-year event. On the 
contrary, the 2014 drought, even with more precipitation, is categorized as a more extreme event 
(200-yr return period) due to extreme temperature conditions. Figure 1e displays the compound 
extreme return levels of three extreme droughts in California (i.e., 1924, 1977, 2014) and their 
corresponding univariate precipitation-based return periods (x-axis in Figure 1). Our analysis 
demonstrates the importance of considering concurrent extremes, especially in light of the recent 
decades’ rising temperatures. A compound extreme return period analysis approach allows 
obtaining more realistic estimates of risk of climate extremes.  Noted, however, that for different 
hazards associated with different societal impacts, such compound risk estimation will depend on 
different combinations of univariate risk.  In this case, for drought, impacts are tied not only to 
precipitation deficits but also water (and evaporative) demand, which is linked to temperature – 
thus the combination of these two variables is appropriate.   
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Figure 1: Ranked historical average precipitation (a) and temperature data for California. 
Percent increase in maximum daily temperature relative to the mean daily maximum 
temperature during January 13-20, 2014 (c). Compound temperature and precipitation extremes 
return period (d). Univariate empirical return period of extreme droughts in California and their 
corresponding compound extreme (red text) return periods (e). 

(II)	 Expand,	 test	 and	 implement	 a	 multivariate	 drought	 analysis	 framework	 for	
combining	 multiple	 drought	 indicators	 probabilistically	 to	 improve	 drought	
monitoring	and	prediction		

Numerous dynamic and statistical drought prediction models have been used for providing 
drought information and/or early warning. The concept of Ensemble Streamflow Prediction 
(ESP) has been used as a basis for forecasting such univariate drought indicators such as the 
widely-used Standardized Precipitation Index (SPI) for seasonal drought prediction.  
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In this study, we outline a framework for using the ESP concept for multivariate, multi-index 
drought prediction. We employ the recently developed Multivariate Standardized Drought Index 
(MSDI), which integrates precipitation and soil moisture for describing drought. In this 
approach, the ESP concept is first used to predict the seasonal changes to precipitation and soil 
moisture. Then, the MSDI is estimated based on the joint probability of the predicted 
accumulated precipitation and soil moisture as composite (multi-index) drought information.  
Given its probabilistic nature, the MSDI model offers both a measure of drought severity and 
probability of drought occurrence. This framework has been applied to soil moisture and 
precipitation individually and combined precipitation-soil moisture using MSDI, and was tested 
over the United States and East Africa (AghaKouchak 2014a; 2014b). The drought forecasting 
framework provides the probability occurrence of drought based on climatology and near-past 
observations of soil moisture. Our results indicate that soil moisture exhibits higher persistence 
than precipitation, and hence improves drought predictability (see Figure 2) in cases where 
precipitation occurs but is insufficient to overcome accumulated water deficits. Finally, the 
results indicate that the suggested multi-index predictions are consistent with the observation.  

 

Figure 2 - Boxplots of autocorrelation coefficients (up to 6 months) of accumulated 6-month 
precipitation (blue) and soil moisture (red) from MERRA-Land for different initial month for (a) 
California and (b) Texas. The box plots show the median (center), 25th (lower) and 75th (upper) 
percentile edges. 

	

(III)	Improving	seasonal	drought	prediction	by	combining	statistical	and	dynamical	
models.	

Improving water management in water stressed-regions requires reliable seasonal precipitation 
predication, which remains a grand challenge. Numerous statistical and dynamical model 
simulations have been developed for predicting precipitation. However, both types of models 
offer limited seasonal predictability. This study outlines a hybrid statistical-dynamical modeling 
framework for predicting seasonal precipitation. The dynamical component relies on the 
physically based North American Multi-Model Ensemble (NMME) model simulations (99 
ensemble members). The statistical component relies on a multivariate Bayesian-based model 
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that relates precipitation to atmosphere-ocean teleconnections (also known as an analog-year 
statistical model). Here, the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI), 
and Atlantic Multi-decadal Oscillation (AMO) are used in the statistical component. The 
dynamical and statistical predictions are linked using the so-called Expert Advice algorithm, 
which offers an ensemble response (as an alternative to the ensemble mean). The latter part leads 
to the best precipitation prediction based on contributing statistical and dynamical ensembles. It 
combines the strength of physically based dynamical simulations and the capability of an analog-
year model. An application of the framework in the southwestern United States, which has 
suffered from major droughts over the past decade, improves seasonal precipitation predictions 
(3- to 5-month lead time) by 5-60 percent relative to the NMME simulations. Overall, the hybrid 
framework performs better in predicting negative precipitation anomalies (10-60% improvement 
over NMME) than positive precipitation anomalies (5-25% improvement over NMME). The 
results indicate that the framework would likely improve our ability to predict droughts such as 
the 2012-2014 event in the western United States that resulted in significant socio-economic 
impacts.  

Introduction	

Water supply reliability is a major challenge in the southwestern United States (US), with its 
growing population and industry. The region has experienced several droughts in the past 
(Seager et al., 2005; Woodhouse et al., 2010; Shukla et al., 2015; Cheng et al., 2016) and is 
likely to experience more frequent and severe droughts in the future (Seager et al., 2007; Cayan 
et al., 2010; Cook et al., 2015). The water supply in some parts of the region (e.g. California and 
Nevada) relies on winter precipitation, when most of the annual rainfall occurs (Cayan et al., 
1998). The ongoing 2012-2015 California drought has led to more than a year’s worth of 
precipitation deficit (Savtchenko et al., 2015). The rainy seasons in 2014 and 2015 were also the 
warmest two years in the past 120 years (Shukla et al., 2015; AghaKouchak et al., 2014). Such 
combinations of below normal precipitation and high temperature can significantly exacerbate 
the impacts of drought by promoting wildfires (Westerling et al., 2003; Keeley et al., 2009) and 
reducing snowpack in high elevations (Shukla et al., 2015). 

The sustainable management of water resources in a region with frequent droughts requires 
timely and reliable seasonal precipitation forecasts. A community report on California drought 
issues that was developed based on inputs from decision-makers and stakeholders identified 
seasonal drought prediction as the key challenge facing the research community (AghaKouchak 
et al., 2015). The observed relationship between precipitation and the ocean-atmosphere 
teleconnections (Ropelewski and Halpert, 1986; Bradley et al., 1987; McCabe and Dettinger, 
1999) has inspired the investigation and use of statistical analog-year models for seasonal 
precipitation forecasting (e.g., Hartmann et al., 2008; Wu et al., 2009; Schepen et al., 2012; Peng 
et al., 2014). Many alternatives of analog-year precipitation prediction methods have been 
explored (e.g., Saha et al., 2014; Zhang et al., 2007). Although such models display some 
prediction skills, their predictability is limited due to the complex relationship between 
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precipitation and the known teleconnections (e.g., Folland et al., 1991; Gershunov, 1998; Obled 
et al., 2002; Rajeevan et al., 2007).    

 
Fig. 3: Comparison between a) the observed precipitation and b) the NMME simulation for the 
anomalies of the precipitation rate from Dec, 2014 to Feb, 2015. The forecast initial condition is 
set to Oct, 2014. Note that the color bars in the maps are not in the same scale. 

 
Physically based dynamical models have also been explored for seasonal precipitation 

prediction. Unlike statistical techniques, these models rely on the dynamical interactions among 
the land, ocean, and atmosphere, which are resolved using model parameterization and numerical 
simulations (e.g., Zhang et al., 2007; Merryfield et al., 2013; Saha et al., 2014). Progress in 
dynamical model simulations over the past three decades has led to better and more reliable 
predictions. However, the predictability of dynamical model simulations is still rather limited 
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and is highly variable in space and time (Yang et al., 2009; Wang et al., 2009; Kim et al., 2012; 
Infanti and Kirtman, 2015; Jia et al., 2015). Previous studies have shown that the forecasting 
skill of dynamical models is mainly explained by the El Nino-Southern Oscillation (ENSO) 
variability (Kumar et al., 2007; Wang et al., 2009; Cohen and Jones, 2011), which itself does not 
fully account for the total variability in precipitation (Gao et al., 2006). To overcome the 
limitations of individual dynamical models and benefit from the strength of a diverse set of 
models, there has been a growing tendency to use multiple models and combine their forecasts 
(Hewitt 2004; Palmer et al, 2004; Bougeault, 2010). Recently, a multi-agency effort led to the 
development of the North American Multi-Model Ensemble (NMME; Kirtman et al., 2014), 
which has provided climate forecasts ranging from intra-seasonal to inter-seasonal scales. The 
NMME ensemble average generally offers better predictions than individual contributing models 
do for different regions (Becker et al., 2014; Kirtman et al., 2014; Ma et al., 2015); however, the 
reliability of the precipitation forecasts in general is still rather low (Becker et al., 2014; Kirtman 
et al., 2014). As an example, Figure 3 shows the observed and NMME-predicted anomalies for 
Dec. 2014-Feb. 2015 precipitation (DJF 2014), from a forecast initial condition in October 2014. 
As shown, the NMME’s precipitation prediction for DJF 2014 was not consistent with the 
observations in the western US (i.e., the NMME indicated a positive precipitation anomaly, but 
the region experienced one of its most extreme droughts). Similar maps based on different 
initialization dates can be found through Climate Prediction Center 
(http://www.cpc.ncep.noaa.gov/products/NMME/http://www.cpc.ncep.noaa.gov/products/NMM
E/). 

Previous studies have argued that combining statistical and dynamical models can improve 
seasonal precipitation prediction (Coelho et al., 2004; Schepen et al., 2012). This study outlines a 
hybrid framework for combining dynamical and statistical seasonal precipitation forecasts to 
improve their skill, with consequent benefits for improved drought prediction in the southwest 
US and other regions. The proposed hybrid framework is fundamentally different from the 
statistical post-processing approaches in which a statistical model is used to combine multiple 
dynamical models, e.g., by weighing the ensemble members (Raftery et al., 2005; Luo et al., 
2007; Schepen and Wang, 2013). It follows instead a hierarchical approach also taken by 
Schepen et al. (2014), where dynamical and statistical models work in parallel and offer their 
own predictions, and are subsequently merged into a single prediction. Here, the dynamical 
component is based on the available NMME simulations. The statistical forecasts employ a 
Bayesian analog-year approach that simulates precipitation based on a number of conditioning 
factors, such as the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI), and 
Atlantic Multidecadal Oscillation (AMO). The statistical analog-year forecasts and the NMME 
dynamical model simulations are then combined via a multi-model averaging framework. In 
contrast to the conventional ensemble mean, the weighted averaging techniques such as 
Bayesian-based techniques (Raftery et al., 2005; Buser et al., 2010; Najafi and Moradkhani, 
2015) and expert-based algorithms (Cheng and AghaKouchak, 2015) distribute the weights 
based on the performance of each model during a training period. The final ensemble response 
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from weighted averaging techniques generally outperforms the single best model (Weigel et al., 
2008) and the simple ensemble mean, except under particular circumstances such as extremely 
large variability in models (Weigel et al., 2010). This study uses the so-called Expert Advice 
(hereafter, EA) algorithm described in Cheng and AghaKouchak (2015), which returns the 
weighted average of the ensemble that is supposedly the best response from the ensemble of 
statistical and dynamical simulations.   

Study	Area	and	Data	Resources	

This study focuses on seasonal precipitation forecasting in California and Nevada. This 
region has recently suffered from severe droughts, and reliable forecasts have become crucial for 
improving water management. In California, 75% of the annual precipitation occurs between 
November and March (i.e., rainy season), with the half occurring between December and 
February (Shukla et al., 2015). Given the strong seasonality of precipitation in the region, water 
management primarily relies on rainy season precipitation. Thus, this study focuses on 
precipitation forecasting during the rainy season with different lead times. The forecast periods 
begin from November, December, and January of each year and continues to March; that is, 3- to 
5-month lead times (i.e., NDJ, NDJF, NDJFM, DJF, DJFM, and JFM). All forecasts are initiated 
on October.		

This study proposes a hybrid method to improve precipitation forecasts by combining 
predictions based on the dynamical model simulations with statistical predictions that leverage 
atmosphere-ocean teleconnections with the seasonal precipitation. The dynamical model 
simulations with different lead times are obtained from the North American Multi Model 
Ensemble (NMME; Kirtman et al, 2014). Retrospective NMME simulations for Jan. 1982 – Dec. 
2010 are available at the International Research Institute for Climate and Society (IRI)’s climate 
data library. Real-time forecasts of NMME are also available since Aug. 2011 except a few 
models (CMC1-CanCM3 and CMC2-CanCM4), which are available since December 2011. To 
avoid discrepancies in the number of models form one year to another, we excluded 2011 
simulations from our analysis and used the rest of data during 1982-2014 for which all model 
simulations were available. The observed reference precipitation is based on a gridded station-
based data record developed for western US forecasting and verification purposes (Wood 2008; 
Tang et al., 2009).  

Hybrid	Forecast	Model	

This study proposes a hybrid precipitation prediction framework that combines the 
dynamical NMME forecasts with statistical simulations in each 1x1 degree grid cell across the 
study area. The purpose of combining these two types of models is to select the best forecasts 
from the ensemble of dynamical and statistical predictions. Figure 4 shows an overview of the 
proposed hybrid precipitation prediction model. The dynamical (panel (a) in Fig. 4) and 
statistical (panels (b) in Fig. 4) simulations run in parallel; each leads to an ensemble of 
predictions. Then, the forecast ensembles produced from the dynamical and statistical model 
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simulations are overlaid to form the final ensemble (panel (c) in Fig. 4). Lastly, the EA 
algorithm, trained with model performance in the past, finds the best ensemble response from the 
statistical and dynamical predictions (panel (d) in Fig. 4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Flowchart of 
the proposed hybrid 
statistical-dynamical 
precipitation 
forecasting algorithm. 
See the text for 
details. 

 

a) Dynamical	Model	Simulations		

The North America Multi-Model Ensemble (NMME; Kirtman et al., 2014) is an ensemble of 
simulations from multiple dynamical models and provides probabilistic forecasts with some 
information regarding forecast uncertainty. Each dynamical model contributes a certain number 
of ensemble members. In this study, we picked an ensemble of 99 members from eight models 
which are used by the Climate Prediction Center (CPC) for the operational forecasts (i.e., 
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CMC1-CanCM3 [10], CMC2-CanCM4 [10], COLA-RSMAS-CCSM4 [10], GFDL-CM2p1-
aer04 [10], GFDL-CM2p5-FLOR-A06 [12], GFDL-CM2p5-FLOR-B01 [12], NASA-GMAO-
062012 [11], NCEP-CFSv2 [24]) and used the ensemble mean of each model in the hybrid 
forecast model that is discussed in following sections. We studied the NMME precipitation 
forecasts beginning from November (initialized in October) with up to a 5-month lead time (i.e., 
November – March, NDJFM) during 1982-2014, except the year 2011 since some NMME 
models’ data are not available for 2011. This is the rainy season for the study area.    

b) Statistical	Analog-Year	Simulations		

Several studies have discussed the impacts of atmosphere-ocean teleconnections on seasonal 
precipitation patterns (Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986; Bradley et 
al., 1987; McCabe and Dettinger, 1999; Kurtzman and Scanlon, 2007; DeFlorio, 2013). The 
ENSO, which represents the fluctuation of sea surface temperature (SST) and air pressure in the 
tropical eastern Pacific Ocean, affects regional precipitation levels, across several regions of the 
globe including North America (Bradley et al., 1987; Redmond and Koch, 1991; Diaz and 
Kiladis, 1992). The above-normal SST (warm phase or El Nino) and below-normal SST (cold 
phase or La Nina) in the tropical Pacific Ocean have different climatic impacts (Bradley et al., 
1987; Hoerling et al., 1997; Trenberth, 1984, 1997) with variable significance, depending on the 
signal’s strength (Kiladis and Diaz, 1989; Redmond and Koch, 1991). For instance, the above-
normal precipitation in southern California is usually associated with El Nino episodes 
(Redmond and Koch, 1991), whereas precipitation over northern California does not show a 
strong association with either El Nino or La Nina episodes (McCabe and Dettinger, 1999). 
However, the collective information from ENSO signals and the long-term fluctuations in the 
North Pacific Ocean-indicated as the Pacific Decadal Oscillation (PDO) can improve the 
precipitation prediction skill in the western US (McCabe and Dettinger, 1999). In addition, the 
Atlantic Multidecadal Oscillation (AMO), which reflects the long-term changes in the sea 
surface temperature of the North Atlantic Ocean, affects precipitation and drought frequency 
over North America (McCabe et al., 2004). The two major droughts in the 20th century (1930s 
and 1950s) occurred during the positive phase of AMO and negative phase of PDO between 
1925 and 1965 (McCabe et al., 2004). Given the demonstrated capability of PDO, MEI, and 
AMO in the prediction of precipitation over North America, this study assesses the potential for 
these three indices to improve seasonal precipitation forecasts over Southwest US. The monthly 
records of teleconnection indices are obtained from the Earth System Research Laboratory at the 
National Oceanic and Atmospheric Administration (NOAA). More information on PDO, MEI, 
and AMO and their impacts on the southwestern US is provided in Appendix A. 

The proposed hybrid approach benefits from the predictability of an analog-year model based 
on teleconnection indices (Hidalgo and Dracup, 2003; Kurtzman and Scanlon, 2007). We 
propose a Bayesian model based on copula functions (Joe, 1997; Nelsen, 1999) to represent the 
joint distribution of teleconnection indices and seasonal precipitation. Unlike multivariate 
distribution functions, such as the bivariate Gaussian or Gamma distributions (Kelly and 
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Krzysztofowicz, 1997; Sharma, 2000; Yue et al., 2001), copulas do not require all of the 
marginal distributions to come from the same distribution.  

Copula functions are defined as multivariate distribution functions, P x#, . . . , x& , with 
uniformly distributed variables on the interval 0, 1 :   

𝑃 𝑥#, … , 𝑥,, … , 𝑥- = 𝐶 𝑃 𝑥# , … , 𝑃 𝑥, , … , 𝑃 𝑥- = 𝐶 𝑢#, … , 𝑢,, … , 𝑢-  
(1) 

where, 𝐶  is the Cumulative Distribution Function (CDF) of the copula, and 𝑃 𝑥,  is the 
marginal distribution of 𝑥, being uniform on the interval 0, 1 , which is also denoted by 𝑢,. Note 
that 𝐶 connects the CDFs of the random variables (i.e., 𝑢,), whereas 𝑃 …  in the left-hand side 
represents the joint probabilities of the original random variables (i.e., 𝑥,).  

The Elliptical and Archimedean copulas (Embrechts et al., 2003; Nelsen, 1999) are the two 
families that are most frequently used in hydrologic applications (e.g., Favre et al., 2004; Dupuis, 
2007; Hao and AghaKouchak, 2013; Madadgar and Moradkhani, 2015). Archimedean copulas 
have limitations in preserving high dimensional pair-wise dependence (Joe 1997). Elliptical 
copulas, on the other hand, are more flexible for describing associations among more than two 
variables. For this reason, we use Gaussian copula from the elliptical family for the analog-year 
model as explained below. 

We use the conditional probability distribution function based on copulas (Madadgar and 
Moradkhani, 2013) to estimate the predictive distribution of precipitation given the joint status of 
the teleconnection indices: 

  

𝑝 𝑥#|	𝑥4 	… , 𝑥- =
𝑐 𝑢#, … , 𝑢- 𝑝 𝑥,-

,6#

𝑐 𝑢4, … , 𝑢- 𝑝 𝑥,-
,64

 (2) 

where, 𝑝 𝑥#|	𝑥4 	… , 𝑥-  is the conditional distribution of the random variable 𝑥# given the set 
(𝑥4 	… , 𝑥-) of random variables; 𝑐 𝑢#, … , 𝑢-  is the Probability Density Function (PDF) of the 
continuous copula function; and 𝑝 𝑥,  is the PDF of 𝑖:;  random variable. The conditional 
probability of 𝑥# given 𝑥4 (i.e., bivariate case) is expressed as follows: 

𝑝 𝑥#|𝑥4 = 	𝑐 𝑢#, 𝑢4 . 𝑝 𝑥# 	
(3) 

In a trivariate case, the conditional probability of x# given x4, x< is defined as 

𝑝 𝑥#|𝑥4, 𝑥< = 	
𝑐 𝑢#, 𝑢4, 𝑢< . 𝑝 𝑥#

𝑐 𝑢4, 𝑢<
 (4) 

We used Eq. 4 to estimate the conditional probability of precipitation at each grid cell in the 
study area (denoted by 𝑥#) given multiple teleconnection indices (denoted by 𝑥4 and 𝑥< ) that 
have been observed in the preceding months/seasons. We have used multiple variables, including 
PDO, MEI, and AMO, and linked them to precipitation using Gaussian copula as mentioned 
above. The copula parameters have been estimated using the method of Inference Function for 
Margins (IFM; Joe, 1997). The predictive distribution of Eq. 4 is then obtained once using AMO 
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(i.e. 𝑥4) and MEI (i.e. 𝑥<) and once using AMO (i.e. 𝑥4) and PDO (i.e. 𝑥<). Then, the 50th 
percentiles (median) of the resulting probability distributions are used as the final forecasts; that 
is, two forecasts each obtained from a separate probability distribution.  

c) Expert	Advice	(EA)	Algorithm	

In the hybrid model, the Expert Advice (EA) algorithm (Cheng and AghaKouchak, 2015) is 
used to combine the dynamical and analog-year statistical components (Fig. 4). In this 
application, the final ensemble in the hybrid model consists of the two statistical analog-year 
model predictions, the grand ensemble mean of the NMME forecasts, and the ensemble mean of 
each participating model in the NMME- that is, eight ensemble members from eight models – 
making a total of eleven inputs to the EA algorithm. The EA algorithm assigns different weights 
to the ensemble members based on their performance during a training period, and returns their 
weighted average as the best ensemble response.  

Previous studies show that averaging the ensemble of multi-model predictions with equal 
weights does not necessarily lead to the most skillful outcome (Masson and Knutti, 2011; Knutti 
et al., 2010). In fact, the ensemble mean may be biased by poorly performing models 
(Krishnamurti et al., 2000) and smooth out the extreme events predictions (panel (a) in Fig. 4). 
The EA algorithm argues that instead of the ensemble mean, an ensemble response should be 
selected that is better than each individual ensemble member, plus an error term. The EA 
algorithm starts with equal weights (𝑤>#, 𝑤>4, 	 … , 𝑤>? = 	 #

?
) for all the N ensemble members 

(including both statistical and dynamical simulations) at the first time step 𝑡 = 1  of the training 
period (see Figure 5). In this particular application of the method, there are 11 weights i. e. 𝑁 =
11  for 11 forecast components at each time step (	𝛾-,:) (i.e. the 8 dynamical model ensemble 
means, the NMME grand ensemble mean, and the two statistical predictions).  The weight of 
each member is then updated at each time step based on its relative performance to the others 
during the past time steps. A loss (error) function, 𝜆 𝜔, 𝛾 , is used to adjust the weights of 
ensemble members based on the observed variable (i.e. 𝜔) and the simulated variable (i.e. 𝛾). 
The loss function is obtained by optimizing the weight function 𝜙: 𝜔  as explained in Vovk 
(2001).. Ultimately, the goal of the algorithm is to find the best ensemble response (Fig. 5-b) 
with the smallest cumulative error over the training period. More details on EA algorithm is 
found in Cheng and AghaKouchak (2015). Given the relatively short length of record (1982-
2014), we use hindcasts from 1982 up to the last year before the target year (after 2005) for 
estimating the weights (i.e. training purposes). The model is then validated for the target year 
based on ground-based observations.  
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Fig. 5: The flowchart (a) and schematic view (b) 
of the Expert Advice (EA) algorithm. 

 

Results	and	Discussion	

In this section, we show the results of the proposed hybrid precipitation prediction approach 
at the spatial resolution of 1 x 1 degree over the southwest US. Precipitation forecasts are 
presented for different periods during the rainy season of the region; i.e. NDJ, NDJF, NDJFM, 
DJF, DJFM, and JFM. The results of the statistical precipitation model are also generated for the 
same forecast periods. This step involves the conditional forecast of precipitation anomaly given 
the global teleconnection indices, including PDO, MEI, and AMO. The statistical model 
describes the joint relationship between AMO-MEI (and AMO-PDO) and winter precipitation 
using copulas (see also Eq. 4). These climate indices are averaged over Jun-Oct where they show 
relatively high correlation with the following rainy season precipitation in several regions of the 
world (Schepen et al., 2012; Khedun et., 2014; Kurtzman and Scanlon, 2007) including the 
western US (Redmond and Koch, 1991). It should be noted that there are some sources of 
uncertainty in reported climate indices such as PDO (Wen et al., 2014) which can influence the 
relationships between the predictors and precipitation to some extend and consequently affect the 
statistical model simulations.  As explained earlier, the conditional PDF of precipitation was 
separately estimated for each pair of teleconnection indices (see Eq. 4), and the 50th percentile 
(median) is used as the final prediction of associated PDF. The choice of 50th percentile from the 
predictive distribution is another source of uncertainty in statistical model simulations which 
needs to be studied in future efforts. 

The EA algorithm is applied to both statistical model simulations and dynamical model 
simulations. To evaluate the proposed hybrid framework, we assessed the predictability of the 
hybrid model and the dynamical model in capturing the negative precipitation anomalies (below-
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average precipitation) during two major droughts in the past decade; 2006-2008 and 2012-2014. 
Note that precipitation anomalies for each forecast period at each grid cell are calculated based 
on the average precipitation over 1982-2014 in that particular grid cell.  

 

 

 

  

Fig. 6: The area [mi2] with the observed negative precipitation anomaly (red bars) correctly 
captured by the NMME (green bars), statistical model (yellow bars), and hybrid model (blue 
bars) predictions during 2006-2008 and 2012-2014 droughts. Forecasts are initiated from 
October of each year, i.e. IC = Oct and the target forecast periods start at Nov, Dec, or Jan and 
continues up to the following March. 

Figure 6 shows the size of observed area under drought conditions (i.e. negative precipitation 
anomaly) (light gray bars) and the size of area correctly captured as dry region using the grand 
ensemble mean of the NMME (dark gray bars), the statistical simulations’ mean (yellow bars), 
and the hybrid framework (blue bars). Note that the size of area is calculated based on the total 
number of grid cells with observed/simulated negative precipitation anomaly multiplied by the 
size of each grid cell. As shown, the hybrid model and the statistical model could capture these 
two drought events better than NMME, especially for the rainy season of 2006-7 and 2014-15. 
The drought predictability for 2014-15 varies from 28% (NDJ) to 82% (DJFM) for the hybrid 
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model, and 19% (NDJ) to 62% (DJF) for the NMME model. Overall, for the extreme drought of 
2014-15, the predictability of hybrid model was 10% (NDJ, NDJF) to 50% (DJFM) greater than 
that of NMME. Similarly, for 2006-7 drought, the predictability increases by 10% (NDJ) to 60% 
(NDJF, DJF, DJFM) after the hybrid-model application. Note that in some other years all the 
three models could successfully capture drought conditions across the region and their drought 
predictabilities were rather similar (Figure 6). 

Figures 7a and 7b display the spatial distribution of the observed precipitation anomaly (1st 
column), ensemble mean of NMME forecasts (2nd column), the statistical simulations’ mean (3rd 
column), and the hybrid simulation (4th column) during the rainy season of 2006-7 (Figure 7a) 
and 2014-15 (Figure 7b). The pixels with a positive precipitation anomaly are shown in blue, and 
those with a negative anomaly are shown in brown. For each target year (e.g., 2006-7 and 2014-
15), we used the data from 1982 up to the last year before target year to calibrate the hybrid-
model parameters, including the weights of the EA algorithm and the copula parameters. This 
procedure was repeated for each target year at each grid cell (1 x 1 degree).  

 
                   a) 2006-2007 b) 2014-2015 

  
Fig. 7: Precipitation anomaly (mm/day) during the rainy season of a) 2006-2007 and b) 2014-2015 
(right) with different lead times (NDJ, NDJF, NDJFM, DJF, DJFM, and JFM). Forecasts are initiated 
from October of each year, i.e. IC = Oct. The observations (1st col. from left), NMME forecasts (2nd col.), 
statistical model predictions (3rd col.), and hybrid model predictions (4th col.) are shown for the target 
periods of each year. 
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As shown in the observations, the southwestern US has experienced extreme droughts in 

2006-2008 and 2012-2014 periods, specifically in the latter. As shown for 2006-7 period, the 
NMME signal was opposite of that of the observations in all the lead times (i.e., NMME 
indicated wet conditions, but the region experienced a major drought). However, both the 
statistical model and the hybrid model could capture the 2006-7 drought much better than 
NMME. Despite the performance of statistical model, its contribution in the final hybrid model 
depends on its performance during the entire training period. Likewise, the contribution of the 
hybrid model depends on its performance during the training period. According to the final 
weights of statistical and dynamical models, both statistical and dynamical models contribute in 
the final result of the hybrid model. Although some discrepancies between the hybrid model and 
the observations are apparent in central California, the overall performance of the hybrid model 
is better than using solely dynamical or statistical model simulations in capturing the drought of 
2006-7 across the region. In 2014-15, the NMME could capture the negative anomalies in most 
parts of California (especially in NDJF and DJF); however, it gives opposite signal for almost 
entire Nevada. The statistical model, on the other hand, could predict the negative anomalies of 
the southern part of the region and fails to capture the drought conditions in the northern part. 
The combination of the two models (i.e. the hybrid model), however, could improve the 
predictions of the NMME and statistical model for most parts of the region.  

 
This study also analyzes the performance of the three models for the wet winter of 2010-

2011 (i.e. 2010-11). Figure 8 compares the predictions of the NMME, statistical model, and the 
proposed hybrid statistical-dynamical model for the rainy season of 2010-11. Similar to the 
previous results, the forecast lead time increases from 3 months to 5 months. As shown, the 
statistical model could not predict the positive anomalies in the region. The grand ensemble 
mean of NMME forecasts also failed to represent the positive precipitation anomalies (i.e. wet 
conditions) especially in central and south California. However, the hybrid model slightly 
improved the predictions for central California and Nevada (Fig. 8-a). The predictability of wet 
conditions in 2010-11 varies from 45% (NDJFM) to 85% (JFM) for the hybrid model and from 
35% (NDJ) to 60% (JFM) for the NMME. Overall, the hybrid model improves the predictability 
(Fig. 8-b) by 5% (DJFM) to 25% (JFM) relative to the NMME. Comparing the results in Fig. 6-8 
indicates that all the three models have higher predictability in the selected dry years than in the 
selected wet year. It should be noted that the wet conditions in 2010-11 was significantly 
attributed to a sequence of Atmospheric River (AR) storms (Zhu and Newell, 1998). AR storms 
are generated by water-vapor streams in the atmosphere and usually supply approximately 20-
50% of the annual precipitation and streamflow in California (Dettinger, 2013). In December 
2010, ARs occurred within a week’s time and provided half of the average annual precipitation 
for central and southern California. Although some connections are found between ARs and 
atmosphere-ocean dynamics such as Madden-Julian Oscillation (MJO) (Guan et al., 2012; Ralph 
et al., 2011), North Atlantic Oscillation (NAO) (Lavers and Villarini, 2013), Arctic Oscillation 
(AO) and Pacific North American Index (PNA) (Guan et al., 2013), these associations are not yet 
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clearly understood (Gimeno et al., 2014), and operate at sub-seasonal rather than seasonal time 
scales. Predicting ARs is very challenging, and both dynamical and statistical models have 
limitations in representing them. This is one of the limitations of the proposed hybrid statistical-
dynamical framework and can be improved if the dynamical and statistical models provide more 
accurate simulations of the ARs, or if other teleconnection indices are discovered that more 
strongly reflect a tendency for ARs within a given season.   

(a) Precipitation anomaly 

 

(b) Predictability 

 

Fig. 8: Comparing the performance of hybrid model and the dynamical and statistical models in 
a) capturing the positive precipitation anomalies (i.e. wet conditions) and b) predictability of 
positive anomalies during the rainy season of 2010-2011. 

 
Insight into the contributions of the different components of the hybrid framework can be 

gained from assessing the weights obtained for the statistical and dynamical forecasts, for 
different seasonal predictands. Figure 9 displays the spatial distribution of weights obtained from 
the EA algorithm for the grand ensemble mean of the NMME and the statistical model 
simulations. As seen, the ensemble mean of the NMME attained generally larger weights in 
northern California relative to the statistical model simulations. In contrast, the statistical model 
simulations obtained larger weights in southern California and central to southern Nevada. 
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Neither model, however, receives large weights in central California and northern Nevada, which 
means that the rest of ensemble members (corresponding to the ensemble mean of each of the 
eight NMME models) in the hybrid model ensemble are given large weights for those regions.  

 

Fig. 9: Weight distribution obtained from the EA algorithm for the NMME ensemble mean 
forecasts (left) and the statistical model forecasts (right) for different prediction periods (i.e. 
NDJ, NDJF, NDJFM, DJF, DJFM, JFM). 

Concluding	remarks	

In recent decades, drought monitoring has improved significantly due to a range of satellite 
observations and hydroclimate reanalysis datasets (Xia et al., 2012). However, drought 
prediction at seasonal to inter-annual scales remains a grand challenge at a regional scale, as 
evidenced by forecasts during the recent drought in the western US (Seager et al., 2014). A 
breakthrough in predicting precipitation can lead to major improvements in water management 
and risk reduction. This study presents a hybrid seasonal climate forecasting approach that 
combines physically based dynamical models and statistical models, and investigates its potential 
for improving drought prediction in the southwestern US. The proposed hybrid model combines 
dynamical model forecasts from the NMME with Bayesian statistical forecasts using 
teleconnections indices (PDO, MEI, and AMO). The hybrid model utilizes the EA algorithm to 
merge the dynamical model forecasts and statistical model predictions. The hybrid method aims 
to improve drought prediction by combining these two fundamentally different seasonal 
precipitation prediction methods.  
The results indicate that although the dynamical model simulations capture some of the recent 
droughts, they do not offer high predictability, corroborating prior assessments of dynamical 
model precipitation prediction skill. The integration of the statistical and dynamical methods, 
however, appears to improve the prediction of seasonal precipitation in this case study. The 
predictability of seasonal precipitation increases by 5-60% after the application of hybrid model. 
Overall, the hybrid framework performs better in predicting below-normal precipitation than 
above-normal precipitation. While there are still major challenges for reliable seasonal drought 
predictions, the results of this study encourage further exploration of hybrid dynamical-statistical 
methods in different regions with different climate regimes. We acknowledge that several issues 
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such as the relatively short record, uncertainty in the observed dependencies, and model 
parameterization may have affected predictions of wet and drought anomalies. More efforts and 
evaluations of the proposed model are required before this model can be used in water resources 
management.   

Drought prediction studies often focus on national or continental-scale predictions with less 
attention to their adequacy for regional conditions and impacts. The manifestation of drought 
impacts at very local to regional scales, however, motivates interest in evaluating drought-related 
prediction approaches at local to regional scales. At regional scales, different sources of 
predictability may be harnessed through different forecasting methods.  For instance, the strength 
of climate indices (e.g., ENSO) influence on local climate varies in different regions and seasons, 
and dynamical climate forecasting model performance varies similarly.  Here, the hybrid model 
is applied for the southwestern US by including climatic indicators that have been shown to 
affect precipitation in this region. This modeling framework can potentially be applied to other 
regions by integrating the relevant region-specific climatic indicators, as well as the NMME 
predictions that have a global extent.  

 

(IV)	Amplified	warming	of	droughts	in	the	historical	record	and	climate	model	
projections	

During droughts, low surface moisture may translate surface heating into warming, since 
excess energy will be converted into sensible heat instead of evaporating as latent heat. Recent 
concurrent occurrences of droughts and heatwaves have caused compounding ecosystem and 
societal stresses, which prompted our investigation of whether there has been a shift in 
temperatures under meteorological drought conditions in the United States. Strong feedbacks 
between drought conditions and surface temperatures prompted our investigation of whether 
droughts have been warming faster than average climate conditions in the United States. Using 
historical observations, we detected that droughts have been warming faster than the average 
climate in southern and northeastern U.S. Climate model projections also showed a pronounced 
warming shift in southern states between the late 20th and 21st centuries. We report that in the 
southern states, droughts have warmed more than four times the rate at which the average 
climate has warmed. We argue that the amplified warming is influenced by concurrent changes 
in vapor pressure deficit and relative humidity, modifying interactions between the land surface 
and the atmosphere. We anticipate that the magnified shift in temperatures will bring more 
concurrent extremes in the future, exacerbating individual impacts from high temperatures and 
droughts. 

Key	Results	

Our study examined shifts in temperatures occurring during dry months to further explore the 
feedbacks between surface moisture and temperature conditions. Drawing from established 
interactions between drying and warming conditions, we study whether temperatures during 
droughts have experienced changes in the 20th century and whether shifts in dry temperatures 
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will occur under projected climate change conditions. Due to projections showing droughts and 
high temperatures intensifying over the next century, our goal is to understand whether 
temperatures are projected to experience different rates of intensification when coupled with dry 
land conditions. 
We evaluate whether historical and climate model datasets have shown evidence of these 
changes in the contiguous United States. We compare temperatures during different drought 
severities in two historical [1902-1951 and 1965-2014] and two modeled periods [1951-2000 and 
2050-2099]. Since many studies have documented dry regions getting drier and wet regions 
getting wetter, we explore whether regions with historically dry climate conditions would 
experience amplified rates of warming in dry conditions.  
For our observations, we used monthly temperature and precipitation data available from the 
Climatic Research Unit, CRU TS3.23, which is a gridded time-series climate dataset [Harris et 
al., 2014]. The data coverage included all areas of the contiguous United States at a 0.5 degree 
resolution. We used the bias-corrected spatially disaggregated (BCSD) downscaled Coupled 
Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble at a 0.125 degree 
resolution available from the U.S. Bureau of Reclamation website [Maurer et al., 2007]. We took 
an average of the models listed in the appendix to form the model ensemble. 
We first calculated the average temperature shift associated with each dryness threshold for each 
pixel. We used the United States Drought Monitor (USDM) classification scheme (D0, D1, D2, 
etc.) measured by SPI to delineate the drought severity thresholds. For example, at the D0 
threshold, we isolated months that had an SPI value of -0.5 or lower and found the corresponding 
temperature average. To find the temperature shift between periods, we calculated the difference 
between temperature average associated with each period. 
Figure 10a shows that between the early and late 20th century observations from the Climatic 
Research Unit (CRU), the southern and northeastern U.S. experience higher temperature shifts 
under dry conditions than the average climate. Figure 10b shows that the southern states display 
a similar pattern in the downscaled CMIP5 multi-model ensemble.  

 
Fig. 10: Temperature shift associated with each dryness condition. Average temperature shift relating to 
each condition (including all wet and dry conditions, at or under the D0 threshold, at or under the D1 
threshold). (A) We compare the period 1965-2014 relative to a baseline period of 1902-1951 with the 
observed CRU data. (B) We compare the future period 2050-2099 relative to the historical baseline of 
1950-1999 with the CMIP5 model average ensemble.   
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In the observations, the regions associated with amplified temperature change under the D0 and 
D1 thresholds contrast with the warming regions highlighted in the average temperature change 
panel, indicating that the pattern is not temperature driven. The accelerated warming seen under 
dry conditions also does not correspond with regions commonly identified as semi-arid or arid. 
For example, the southern United States experiences a dry climate in the west and a humid 
climate in the east; however, all southern states experience similar accelerations in warming 
under dry conditions. This observation shows that the intensification of dry and wet spatial 
patterns does not hold true for this concurrent analysis. In the downscaled CMIP5 ensemble, the 
spatial patterns also do not coincide with the north to south gradient of latitudinal heating 
predicted under the RCP 8.5 scenario, as shown in Figure 10b. Instead of the northern regions 
experiencing greater shifts in comparison to the southern regions, our results display the opposite 
pattern.  
The gridded maps of the observed and modeled conditional temperatures display similar patterns 
in terms of relative change. However, regional delineations in Figures 11 and 12 highlight the 
differences between the historical observations and model projections. Historically, the 
northeastern region of the U.S. shows the amplified drought-associated temperature shift, while 
CMIP5 models predicts a smaller, more muted shift in temperature with respect to the average 
climate in the entire upper half of the U.S., including the Northeast. CRU observations show that 
the median dry temperature shifts 0.81 degrees higher than the average climate when we isolate 
regions with amplified temperature shifts. In the CMIP5 projections, the median dry temperature 
shifts 0.30 degrees higher than the average climate in the regions with amplified temperature 
change. The shifts quantified in the observations and models shows the influence of dry periods 
on the increasing intensity of climate conditions. 
 

 

Fig. 11: Regional boxplots for observations. Regional boxplots displaying the temperature shifts 
corresponding to each dryness condition for the CRU observations [1965-2014 relative to 1902-
1951]. 
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Fig. 12: Regional boxplots for model ensemble. Regional boxplots displaying the temperature 
shifts corresponding to each dryness condition for the CMIP5 model ensemble [2050-2099 
relative to 1950-1999]. 
 
Our results show that droughts have been experiencing amplified temperature shifts relative to 
the average climate in the southern and northeastern regions of the United States. Projections 
show that droughts will be significantly warmer than average conditions across the southern 
region of the U.S., associated with modeled shifts in local precipitation and soil moisture. These 
results help us identify and characterize the increasing intensity of climate conditions under 
specified dry conditions. The patterns we have associated with waning precipitation and 
warming temperatures will be important in evaluating and preparing for regional changes in our 
climate. 
 

(V)	Understanding	the	impacts	of	future	climatic	warming	on	snow	water	equivalent	
and	water	availability	in	Sierra	Nevada.	

Summary	

Temperature variability impacts the distribution and persistence of the mountain snowpack, 
which critically provides snowmelt-derived water resources to large populations worldwide. 
Warmer temperatures decrease the amount of montane snow water equivalent (SWE), forcing its 
center of mass to higher elevations. We use a unique multivariate probabilistic framework to 
quantify the response of the 1 April SWE volume and its centroid to a 1.0 to 2.0 °C increase in 
winter air temperature across the Sierra Nevada (United States). A 1.0 °C increase reduces the 
probability of exceeding the long-term (1985–2016) average rangewide SWE volume (15.7 km3) 
by 20.7%. It correspondingly is 60.6% more likely for the centroid to be higher than its long-
term average (2,540 m). We further show that a 1.5 and 2.0 °C increase in the winter temperature 
reduces the probability of exceeding the long-term average SWE volume by 31.0% and 41.1%, 
respectively, whereas it becomes 79.3% and 89.8% more likely that the centroid will be higher 
than 2,540 m for those respective temperature changes. We also characterize regional variability 
across the Sierra Nevada and show that the northwestern and southeastern regions of the 
mountain range are 30.3% and 14.0% less likely to have 1 April SWE volumes exceed their 
long-term average for a 1.0 °C increase about their respective average winter temperatures. 
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Overall, the SWE in the northern Sierra Nevada exhibits higher hydrologic vulnerability to 
warming than in the southern region. Given the expected increases in mountain temperatures, the 
observed rates of change in SWE are expected to intensify in the future. 

Evolution	of	the	SWE	Volume	Centroid	

Across the Sierra Nevada, SWE and snowfall have strong regional and elevational signatures. To 
better understand the spatial variability of the hydrologic risk for various precipitation regimes in 
the Sierra Nevada [e.g., windward (western) vs. leeward (eastern) sides, higher (southern) vs. 
lower (northern) elevations, etc.], we divided the 20 basins outlined in Fig. 13A into four study 
domains: northwest (NW), southwest (SW), northeast (NE), and southeast (SE). Fig. 13B shows 
the normalized elevational distribution of the drainage area above 1,500 m, which greatly varies 
by region. Only ∼4% and 16% of the area in the NW and NE, respectively, is located above 
2,500 m, while 36% and 48% of the area in the SE and SW is located above 2,500 m, 
respectively. These large areal differences contribute to the regional variability in hydrologic risk 
associated with the SWE volume and centroid and warming. 

 
Fig. 13. a) Elevation map showing the Sierra Nevada domain above 1500 m. Color coding 
denotes regionally grouped basins. This color scheme is used throughout all figures. White 
pixels are located below 1500 m or outside of the study domain. b) Fraction of area above each 
elevation ( z ). c) Temporal movement of the SWE volume centroid ( cz ). Long-term average and 

inter-quartile range of cz  are demarcated by solid lines and shaded areas, respectively. Only 
pixels above 1500 m were considered in this study. 
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Although we primarily characterize the 1 April snowpack, Fig. 13C presents the 32-y average 
time series (solid lines) and interannual variability (shaded areas) of the SWE volume centroid (

cz ) from November to August to better understand its location on 1 April relative to other times 
of the year. Near the start of the accumulation season, the highest elevations receive snowfall 
causing the SWE volume to be located at these highest elevations. The centroid moves 
downslope with time as lower elevations receive snowfall and SWE accumulates over a larger 
area. Minimal variability occurs January–March (Fig. 13C), when temperatures are very cool and 
storms yield snowfall across nearly all elevations (10). Beginning in the spring (approximately 
April and May), the interannual variability of cz   begins to increase as low-elevation SWE melts 
and the centroid recedes toward higher elevations. SWE is again stored at higher elevations in 
the spring and summer until it melts. Generally, cz   takes on higher elevations in the southern 
Sierra Nevada (light and dark blue) than in the northern basins (purple and red) due to 
elevational differences (Fig. 13 A and B). 
For additional perspective, we consider the most densely sampled elevations across the Sierra 
Nevada based on the California Department of Water Resources in situ observations 
(cdec.water.ca.gov/snow/current/snow/index.html). Within this network, the average snow 
pillow elevation is ∼2,300 m and these observations serve as an indicator of the amount of SWE 
across the range, rather than a direct measure of the SWE volume. Over 60% of the sensor 
measurements occur below 2,540 m, which is the average elevation of cz   on 1 April (Figs. 13C 
and 14). Snow courses in the Sierra Nevada have a similar elevational distribution. Thus, on 
average, about half of the SWE across the range is located at elevations above the majority of the 
sampling network. Also, not all of the basins in Fig. 13A have observations. 
Undersampling the highest elevations with the current in situ network can misrepresent the 
amount of SWE stored and where its center of mass is located in space and time (Fig. 13C). 
Although high elevations make up a smaller fraction of the total area than lower elevations (Fig. 
13B), they will play an increasingly important role in a warmer climate since warmer 
temperatures generally melt SWE at lower elevations resulting in a higher snow line and SWE 
centroid (24). Thus, the northern Sierra Nevada and in particular the NW, with the lowest winter 
SWE centroid (Fig. 13C), are likely most susceptible to warming. Also, the strongest correlations 
between winter temperature and both 1 April SWE and cz  occur in the NW. Not only do warmer 
temperatures shift the partitioning of total precipitation from snowfall toward rainfall, but also 
snow that occurs at these elevations would likely melt sooner under warmer conditions. While 
other hydrometeorological drivers beyond temperature (e.g., precipitation) impact SWE, the 
focus of this study is on understanding SWE distributions conditioned on temperature. In fact, at 
the highest elevations, a larger proportion of the total precipitation becomes SWE than at lower 
elevations. 



	 	

25	
	

Since water managers typically use the 1 April SWE as a metric for estimating melt-derived 
runoff, the remainder of this study focuses on probabilistically assessing the 
vulnerabilities/sensitivities of the 1 April SWE storage (amount and centroid) in relation to the 
average winter temperature. 
Fig. 14 presents the regional climatology and interannual variability of the 1 April SWE volume 
and centroid and average winter temperature. Strong, statistically significant (P<0.05) negative 
correlations exist between the SWE volume and cz  with the regional correlation coefficients 
ranging from −0.66 (NW) to −0.80 (SE). A weaker rangewide correlation exists (r=−0.53) due to 
differences among the regions (e.g., elevation) that greatly contrast between the northern and 
southern Sierra Nevada and degrade its strength relative to the individual regions. Nonetheless, a 
smaller SWE volume tends to correspond to a higher centroid elevation than when a larger SWE 
volume occurs. 
The peak elevation of a region physically constrains the maximum possible elevation of cz . As 

such, it is expected that cz will often be lower in the northern Sierra Nevada. Warmer 
temperatures reduce the SWE volume, thereby increasing the height of its centroid (Fig. 14). 
Stronger correlations exist between temperature and cz than between temperature and SWE. 

Approximately 38% (SE) to 69% (NW) of the variance in cz is explained by temperature 

variability, whereas temperature only explains ∼14% (SE) to 37% (NW) of the variance in SWE. 
These relationships are consistent with previous research that found strong correlations between 
the intermittent melt and the accumulated 1 April SWE in the Sierra Nevada. Regional 
differences in intermittent melt rates/patterns contribute to variability in the strength of the 
correlations. Using the Theil–Sen trend estimator, a decreasing SWE trend from WY 1985–2015 
of ∼ −22 km3 SWE per century is found. 
Although 1 April is often taken to represent the end of the accumulation season, the 32-y average 
day-of-peak SWE across each region occurs earlier (9–16 March) with individual regions 
yielding extreme early (i.e., 21 December) to late (i.e., 9 May) dates for a given year. Hence, the 
melt season often begins before April. While our focus is on the accumulation season, other 
environmental controls impact the SWE distribution and melt rate and their relative importance 
fluctuates across seasons, mountain ranges, etc.  
With the western side of the mountain range facing into the prevailing winds, the NW and SW 
have larger average SWE volumes (dashed vertical lines in Fig. 14) than the eastern basins in the 
rain shadow. Corresponding to the higher mean elevation in the eastern basins (relative to the 
western basins, Fig. 1B), the NE has a higher average centroid than the NW on 1 April (Figs. 
13C and 14). The same relationship is observed between the SE and SW. Also, the western 
Sierra Nevada has greater interannual variability of SWE and centroid values than the eastern 
regions (Fig. 14). In all regions, the extremely warm 2015 winter was the warmest winter season, 
which corresponded to the highest SWE centroid in the Sierra Nevada during this record. 
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However, the coolest winter (WY 1985) neither corresponded to the largest SWE nor lowest cz
in any of the regions. 
Fig. 14 (Bottom Right) summarizes the interannual variability of the average winter temperature. 
Only the NW has a positive long-term average temperature (i.e., 0.6 °C), while the other basins 
have subzero average temperatures (⟨Ta⟩, “×” symbols), with the lowest occurring in the SW at 
−0.9 °C. The difference in ⟨Ta⟩ values between the NW and SW is ∼1.6 °C, which is 5.4 times 
larger than the difference between the NE and SE. While the rangewide temperatures span more 
than 2 °C about its mean value, this is not the case for all of the regions. Therefore, we explore 
the risk associated with a 1.0–2.0 °C temperature change around the rangewide average air 
temperature, but only consider a 1.0 °C change for the subregions. 

 
 
Fig. 14. Scatterplots of annual SWE volume and cz values on 1 April where the shading of the 
circles represents the average winter temperature for each of the 32 y. Correlation coefficients 
(and P values) between the SWE volume and centroid are shown. Plus signs demarcate the 25th, 
50th, and 75th quartiles along the respective axes. Dashed lines demarcate the long-term 
average values. (Bottom Right) Average winter temperature distribution for each region. 
Whiskers span the range of the data. Long-term averages are indicated with “×” symbols. 
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Fig. 14 (Top Left) presents the rangewide SWE distribution sampled for various temperatures 
including ±0.5, ±0.75, and ±1.0 °C about the mean. These temperatures correspond to 1.0, 1.5, 
and 2.0 °C changes centered on ⟨Ta⟩, respectively. The SWE distributions that are generated for 
cooler (warmer) temperatures than the 32-y average are blue (red), while the black curve denotes 
the SWE distribution corresponding to ⟨Ta⟩. The probability density functions (PDFs) become 
more strongly skewed toward smaller SWE values with increasing temperatures, indicating that 
less SWE is more probable with warmer temperatures (Fig. 15, Top Left). The likelihood that the 
long-term average SWE volume (dashed line) will be exceeded decreases with warming as Fig. 
15 (Bottom Left) summarizes. 
For a 1.0 °C change from 0.5 °C below to 0.5 °C above the mean value, it becomes 20.7% less 
likely that the SWE volume will be larger than its long-term average value ⟨SWE⟩, which 
corresponds to exceedance probabilities of 54.3% at −0.6 °C and 33.7% at 0.4 °C. As the 
temperature change about the mean increases to 1.5 and 2.0 °C, the likelihood of exceeding the 
average SWE further decreases. For a 1.5 °C increase (from −0.9 to 0.6 °C), it is 31.0% less 
likely that the long-term SWE will be exceeded, with ∼0.6 °C corresponding to an exceedance 
probability of 30.4%. Similarly for a 2.0 °C change, it is 41.1% less likely that the SWE volume 
will be larger than ⟨SWE⟩ when the temperature changes from −1.1 °C (Pe=68.4%) to 0.9 °C 
(Pe=27.3%). Therefore, the change in the exceedance probability for 2.0 °C is ∼1.3 and 2.0 times 
larger than for the 1.5 and 1.0 °C changes, respectively. 
We similarly assess the vulnerability of the SWE centroid in Fig. 15 (Right) for the same 
temperatures. As evident in Fig. 15 (Top Right), the distribution of zc shifts toward higher 
elevations when warmer winters occur. This shift is consistent with the inverse relationship 
observed in Fig. 14 between the SWE volume and its centroid, causing the PDFs in Fig. 15 (Top 
Left) to shift toward lower SWE values and those in Fig. 15 (Top Right) to shift toward higher 
elevations under warmer conditions. As a result, Fig. 15 (Bottom Right) shows that for the colder 
than average temperatures considered, the probability that the SWE centroid is lower than its 32-
y average value ranges from 98.3% (at ⟨Ta⟩−1.0∘C) to 82.8% (at ⟨Ta⟩−0.5∘C). It drastically 
decreases to 22.1% at ⟨Ta⟩+0.5∘C and 8.5% at ⟨Ta⟩+1.0∘C for warmer than average 
temperatures. A temperature 1.0 °C above ⟨Ta⟩ is 5.8% and 13.7% less likely to have a lower 
than average centroid than when the winter temperature is 0.75 and 0.5 °C above ⟨Ta⟩, 
respectively. Overall, increases in the winter temperature of 1.0, 1.5, and 2.0 °C about 〈Ta〉 
result in changes in the nonexceedance probabilities of −60.6%, −79.3%, and −89.8%, 
respectively (Fig. 15, Right). 
Under warmer atmospheric conditions, it is highly probable that the centroid will be forced to 
higher elevations than its long-term historical location. Also, less of the snowpack will be 
monitored within the existing in situ network since the centroid will likely reside above the 
majority of in situ sites, sampling less of the 1 April SWE distribution. Changes in the 
distribution of montane SWE will present new challenges for monitoring the SWE storage and 
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forecasting the potential spring/summer runoff. These findings emphasize the importance of 
generating, maintaining, and improving near-real-time–distributed SWE data. 
 

 
 
Fig. 15. Impact of 1.0, 1.5, and 2.0 °C of variability about the long-term average winter temperature in 
the Sierra Nevada. (Top) PDFs for rangewide 1 April SWE (Left) and zc (Right) given select average 
winter temperatures. Dashed lines demarcate the long-term average SWE and zc values (same as Fig. 
14). Limits of x axes are set to the data limits. (Bottom Left) The likelihood that the SWE volume is larger 
than the long-term average SWE at different temperatures. (Bottom Right) The likelihood that zc is lower 
than its long-term average given the same temperatures. 
 

Conclusion	

As temperatures are projected to rise across California, a key question emerges: To what extent 
do hydrologic variables respond to different levels of warming? Hence, we characterize the range 
of historical snowpack responses given 1.0–2.0 °C of warming across the Sierra Nevada. The 
response is magnified as the amount of warming increases, which is demonstrated by it 
becoming less likely for the SWE volume (centroid) to be larger (lower) than its long-term 
average value for a 2.0 °C versus 1.5 or 1.0 °C change about the long-term mean temperature. 
We show that the change in the likelihood of above average SWE for a 2.0 °C change is twice as 
large as that for a 1.0 °C change, whereas the change in the likelihood of a lower than average 
SWE centroid for a 2.0 °C change is ∼1.5 times larger than for a 1.0 °C change. Although we do 
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not use climate projections, results highlight the significance of even small changes in 
temperature (e.g., 1.5 °C vs. 2.0 °C of warming). Also, point-scale measurements alone cannot 
yield robust estimates of the montane SWE centroid as done here, which provide valuable 
information for water managers. 
Using a multivariate approach that is adaptable to other SWE characteristics and 
hydrometeorological forcings, we probabilistically identify water resources vulnerabilities to 
provide insight into plausible SWE responses to climate change. The northern Sierra Nevada 
exhibits a greater susceptibility to warming than the southern portion, where the change in the 
likelihood of above average SWE given 1.0 °C of warming is twice as large in the NW as in the 
SE. The larger northern response poses risk for increased future wildfire activity given that the 
region has historically been vulnerable to wildfires with shifts in snowmelt timing. Warmer 
winters reduce the 1 April SWE and force its centroid to higher elevations above the majority of 
the in situ network, which can have major implications in water resources management, flood 
control, hydropower generation, etc. Given the generality of our framework, our model can be 
applied to other snow-covered mountain ranges across the globe. 
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Technical	Readiness	Level	(TRL)	

TRL: 5 
We have shared the source codes of the Hybrid Statistical-Dynamical model with the California 
Department of Water Resources (CADWR). We have also shared the source codes for a simpler 
version of the code and we are expecting feedback later this summer. The CADWR plans to test 
the model independently. We expect to identify the strength and limitations throughout the 
process.  
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